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On The Capacity Of Channels With
Unknown Interference
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M.V. Hegde W.E. Stark*
D. Teneketzis!
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

August 14, 1987

. Abstract

" We model the procéss of communicating in the presence of interference,
which is unknown or hostile, as a two-person zero sum game with the commu-
nicator and the jammer as the players. The objective function we consider is
the mutual information. The communicator’s strategies are distribution{ on X
the input alphabet and on a set of quantizers. The jammer’s strategies are Fa
distributions on the noise power subject to certain constraints. MAWe consider
various conditions on the jammer’s strategy set and on the communicator’s

& & {‘( f‘r-‘v r-\(“f.:': ': S ‘ -~

knowledge. For the case with the decoder uninformed of the actual quantizer T_-:
chosen we show that, from the communicator’s perspective, the worst-case . f.
jamming strategy is a distribution concentrated at a finite number of points VAR o
thereby converting a functional optimization problem into a non-linear pro- v :
gramming problem. Moreover, we are able to characterize the worst-case N /‘ _
distributions by means of necessary and sufficient conditions which are easy -

R RN N A N NI P A .,'\__d. v ..,-.-..'.,’,'_ N O N A AT,

to verify. For the case with the decoder informed of the actual quantizer . f
chosen we are able to demonstrate the existence of saddle-point strategies. ’
The analysis is also seen to be valid for a number of situations where the . e »
. . . / *8§3(n ™A
jammer is adaptive. \_/, Ve o noer N
(. ) ‘. I' 41 ;Vf-"’
*The work of M.V. Hegde and W .E. Stark was supported by the Office of Naval Research under -, - [_' :-
contract N00014 85 K0545 L
'The work of D. Teneketzis was supported by the National Science Foundation under Grant no. - "
ECS-8517708 and by a Rackham Research Grant of the University of Michigan _J"
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1 Introduction ‘Y
N "

The applicability of game-theoretic models in jamming situations is by now :j 0
well established [Blac 57], [Root 61}, [McEl 83a], [McEl 83b), [Star 82|, [Chan i
85], [Peng 86]. In this paper we formulate fairly general models for a number of - \
Jamming situations as two-person zero-sum games between the communicator and = ;

the jammer. We allow the jammer the choice of one of a set of noise distributions ;
satisfying peak and average power constraints. By way of counter-measure the %
communicator is allowed to randomize the input symbols as well as randomize ;: :
the quantizer at the output side. We intend the analysis to be applicable to the ) :‘

performance of soft decision decoding for jammed channels. S’_j E

Typically in a spread spectrum channel the performance in additive white Gaus- . %
sian noise is identical to the performance of non-spread systems; namely the bit -
error probability decreases exponentially with signal-to-noise ratio. However, when
subject to worst-case partial-band or pulsed jamming (wherein power is concen- . 4
trated in time or frequency to affect only a fraction of the symbols transmitted % E&
while allowing the remaining to be received “error-free”) the bit error probability 2 E_;
of a spread-spectrum system decreases only inverse linearly with the signal-to-noise . ‘;
ratio. This is a significant degradation, typically of the order of 30-40 dB for a bit :' ?:
error probability on the order of 105, e -
To remedy this situation most systems use some form of error-correction coding. -
For example, it can be shown that with a hard decision decoder if the code rate ::.': _E
is small (< 1/2) and the jammer is allowed to pulse between several Gaussian >, _
,2 ~ :
b a}:.

.

A )
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distributions then there is no loss in signal-to-noise ratio necessary for reliable

communications compared to an additive Gaussian noise channel with the same

b

3.

(average) power. So it can be said that coding (with hard decision demodulation)

neutralizes a (power constrained) jammer (i.e., makes the performance the same

N |

as an additive white Gaussian noise)[Stark 85a),[Ma 84]. It can also be shown that

(l .',’l."_‘

the worst case jamming strategy is to pulse between two zero mean Gaussian noise
distributions, one of which has zero variance.

As has been well known in the communication field, hard decision decoding

% 5 55 5kl -

loses roughly 2 dB in signal-to-noise ratio compared to soft decision decoding.
Thus considerable interest has focused on soft-decision decoding. One problem
that has been observed is that if a (soft) decoding algorithm designed for a non-
jammed channel is used for a jammed channel then the performance is extremely

poor when the jamming strategy is optimized. One method for “overcoming” this

"
~
-~
~
P
S
2

&
b
R\

. .
¥

difficulty is to assume the jamming noise is one of two distributions (usually one

having zero variance called the “off” state and the other called the “on™ state)

A

Lo

and that the decoder knows when the jammer is “on” and when the jammer is

RS AT AT

“off”. Using this side information, similar results to the hard decision case have
been obtained for the soft decision case [Simo 85] (for small rates there is no loss

in performance). However assuming this information is available is assuming away

R T T e o T ]

the problem. Most systems analyses do not incorporate jamming strategies that

affect the reliability of the side information.

A AAR

Thus there has been considerable interest over the last few years on decoding
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algorithms that do not assume side information and do not do hard decision de- -

coding. However, most of these algorithms still assume the jammer pulses between

L=

one of two levels. In this paper we investigate the case of a decoder that processes

-
symbols from a finite alphabet and where the only constraints on the jammer are
average and peak power. We formulate the problem as a game with two play-
ers. The jammer whose strategy set consists of distributions on the power of the -
jamming noise, and the communicator, whose strategy set consists of a pair of dis- -
tributions, one on the input alphabet and one on the set of quantizers. We look for o

-
worst-case jamming strategies and investigate when the game admits of a saddle

\—l
point. We do the analysis using mutual information as our objective function. v

e
We consider a modulator that transmits one out of M signals. This trans- .

L
mitted signal is denoted by the random variable X. The received signal which =
has been corrupted by the jammer in some fashion is demodulated and quantized i:

‘kl '

f
into one of L values. In order to disallow the jammer from using knowledge of i'."
_ . : o now
the quantizer in designing his worst-case strategy, we allow randomization of the el
L4
%
quantizer over some given set of quantizers. Clearly such randomization increases T
s e
)
the the size of the communicator’s strategy set. Thus, we view this situation as i
A
. . . . TN
a game with two players; the jammer and the communicator. The jammer selects :'.: o~
“
,
the noise in the channel and the communicator chooses the encoder, the decoder " ;:
and the quantizer. The strategy set for the jammer is the set of all distributions on L
the power of the jamming noise subject to the given constraints on the peak and o ;12:
r’
average power. The strategy set for the communicator is the set of all distributions . :.1
b
4 :
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on the input alphabet and on the set of quantizers.

For this general set up we show that the worst case jamming strategy from the
communicator’s perspective is to pulse between a finite number of power levels.
We also consider the case of random decoding strategies where the demodulator
output is quantized into a finite number of outputs by a randomized quantizer,
i.e., the quantization thresholds are random.

For this case we show that the optimal randomized quantizer can perform bet-
ter than the nonrandomized quantizer and that from the jammer’s point of view
the worst-case distribution of the thresholds is concentrated on a finite number of
points. Our basic model can be easily seen to fit a frequency-hop communication
system in which the modulation utilizes an M-ary signal set, which in many cases
are orthogonal signals. The spread-spectrum bandwith is divided into a large num-
ber of frequency slots. Each possible modulated signal is hopped from frequency
slot to frequency slot using a pseudo-random hopping pattern. During each hop
one of the M signals is transmitted. There are two important special cases. First,
all modulated signals use the same hopping pattern and second, each signal has
its own hopping pattern. The demodulator is a coherent or noncoherent matched
filter which is then quantized to a finite number of values.

The remainder of the paper is organized as follows. In Section 2 we define the
models we will be considering and give examples for which our models apply. In
Sections 3 and 4 we derive our results concerning the worst case jamming strategy

and the optimal quantizer strategy for the cases with decoder uninformed about
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P APPSR AN S FSL



;;'. g%, a8 100 Sa¥ At fa¥ S g AP uiint o J0at SBa= oFR-aC R ol My gl gt a R g AL &' FAANAAL A" SRR A e Al A A S Sl AT Rl --.
3] .
N OS¢
—_ i
.
[% ‘
. s
K Y
) :
' : : : % W
: the actual quantizer chosen and with decoder informed about the actual quantizer £
! chosen respectively. Finally in Section 5 we discuss our results and state our T
S,
' (o .
¢ conclusions and extensions. - A
’: t
N
- 2 Channel Models R
: ol
' In this section we describe the models we use in the subsequent analysis. In o
t
h all cases we consider a modulator that transmits one out of M signals in D f: l’:'.
e X
) . . . . . . . )
X dimensions (D < M). This transmitted signal is denoted by the random variable o8
} - 0
L : : _ N o
X. The received signal which is corrupted by the jammer in some fashion is -
) demodulated and quantized into one of L values. The received signal is denoted "~ :’
- ~ .
- "\ .-"
X by the random variable Y. (Y can also be a random vector without changing any >
. RS Kz
of the following analysis). - be
. 1
The general philosophy that we will use is that of game theory with the players o
being the jammer and the communicator. The jamming strategies are distributions T
dF on D random variables, Z,Z,,...,Zp . These random variables represent " !:_
the power of the jammer in each of the signal dimensions and are modelled as . -
73 h
modulating a generic noise variable present in the channel. For example, if D = o :
]
1 and N is a zero-mean, variance 1 Gaussian random variable then the jammer’s f: N
\.} )
noise may be of the form Z,N. The jammer, however, has an average power N
" :'
constraint and a peak power constraint. More generaily the jammer is constrained pE
' by w7
6 ¢
Ol
v
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3 /f(zl,z;,...,zD)dF(zl,z;,,....zD) < K, (1)
-~
and
- .
- 0<2Z, <£b35=1,....D (2)
- where b; is the peak power constraint and f(z,,...,2p) is some continuous
functional of (zi,...,2p). For average power constrained channels with no peak
o
4
Y
- constraint we let b; become very large.
~ The output of the demodulator is quantized into one of L values, say 0,1,..., L—
r!
1. The output of the quantizer, Y, is also the output of the channel for coding.
‘;:: The strategies for the communicator are to choose a distribution, dG(8), on the

quantization thresholds and a distribution, d P(r), on the input alphabet. We will

let © parametrize the quantizers and assume O is some compact subset of R (¢

.«

«

will be used to denote both the random variable as well as a particular realization).

P RN
a

For each (z,...,zp) and 8 there is a probability distribution on the output of the

-~

channel given the input of the channel:

e
7, ProblY =y|X =2,06=0,2,=2,2,=z,,...2p = 2p} = p(y|z,0, 21, 23, ..., 2D).
’,.
4
(3)

;, The above model describes the input output relation of the channel for a particular
symbol. In addition we model the channel as being memoryless.
I-‘:
-~ We now introduce some notation. Let:
e A = {0,1,...,M — 1} be the input alphabet,

7
-
L
e ]
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B = {0,1,...,L — 1} be the output alphabet, oo

O be the quantizer parameter space (some compact subset of R) & g

' Zbe(Zy,...2p), (0 < Z; < b) 2 .

s p(y|z,0,z), the transition probability from z to y given 4, z, and r-

P,.(0, z) the corresponding stochastic matrix, P,;(6,z) = [p(y|z,9, z)]. - 5

We assume that " B

(1) p(yl|z,8,z) is continuous in z for all 4,z and .;\ '_ .

(i1) p(y|z, 0, z) is continuous in @ for all z,z. ) é

Let S denote the set of all probability distributions on the Borel sets of K £ {z= :‘: o

(z1,--.,2p) : 0 € z; < b;}, and N E

~ '

o ;

, 1G,PiF) = I([ [ Pul6,2)dG(6)dF(z ) - é
: = 1 PA=)F() ¥
. N
= 1([ PE@®)4G®)) ol
= 1(P,.(G,F)) (4) T A

where ( ve(G, F )) is the mutual information whenever X and Y are related ;’-

' by the stochastic matrix P,. P ‘
: The performance measure we are interested in is the largest rate such that ‘. ,.
nearly error-free communication can be achieved, i.e. channel capacity. Another - ,_ .

: performance of interest is the channel cutoff rate, Ry, since many researchers be- \ :
lieve this to be a practical limit to the set of rates for which reliable communication ‘- . ,

e o AT S AT A NSNS N A e N T e s N S N e e N ey



is possible. Similar results to those in this paper can be derived with R, as the
performance measure (see [Hegd 87]).

We consider two different information structures for the communicator:

I. The decoder is unaware of the actual quantizer chosen but only knows the
distribution dG(8) on the set of quantizers. The jammer knows only the set
of quantizers but not the distribution dG(8) chosen by the communicator.

He is also aware that the decoder does not know the actual quantizer chosen.

II. The decoder knows the actual quantizer chosen. Again the jammer knews
only the the set of quantizers. He also knows that the decoder is aware of

the actual quantizer chosen.

Case I is seen to apply to situations where, for reasons of implementation perhaps,
the decoding is fixed and not altered with the specific quantizer chosen. It may also
be viewed as worst-case in the sense that the decoder‘s knowledge of the specific
quantizer and the utilization of such knowledge can only improve the communi-
cator’s performance. When there is no randomization of the quantizer, i.e. the
quantizer is fixed, Cases I and II are the same and our results for both cases apply
to that situation. Also several special jamming strategies are of interest because

of correspondence with physical problems. We will classify the cases as follows.

T
: A. Arbitrary joint distribution on Z,, Z,, ..., Zp.
3
¥ — 7 -
B. Zl—Zg—...—ZD——-Z.
<

C. One dimensional jamming, i.e., at most one of the random variables Z; # 0.

9
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: D. Independent jamming, i.e., Z,,Z5,...,Zp are independent.
., - [
™~
S -
SN Case B corresponds *o the physical situation where the jammer is not able to !
™~ A
S
o place different amounts of power in different dimensions of the signal space. Case
o . 5
P::-:_-;-:. C corresponds to the case where only one of the dimensions can be jammed at once. h
::fj- . Case D corresponds to a frequency-hop communication system with independent ."_;
e A
hopping for the different symbols. The standard game theoretic description is

l."
given below. A

f_‘?

Communicator’s Perspective ..a
The communicator is interested in the maximum rate at which information can be ;:

a L'
reliably transmitted no matter what strategy the jammer employs. The communi-

e
cator designs his system assuming the jammer will somehow find out the strategy -
he is using and then choose the worst possible distribution on the power levels. In “d

a’
Case I the largest rate for which information can reliably be transmitced is

*S'

._i

max min I(G, P; F)
GP F .
~

» N

. -"
where I{G, P; F) 2 I(X;Y) when (dG, dP) is chosen by the communicator and dF

o
is chosen by the jammer. That this is the maximum rate of reliable transmission >
is well known since what we are dealing with is a compound channel with a finite .

\‘

\\
input alphabet and a finite output alphabet [Csiz 81, pgs. 172-173]. -

-

Jammer’s Perspective o
A
10

,-

o
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nd
x ' The jammer is interested in the minimum rate such that information can not be
el ]

':. - reliably transmitted at any higher rate no matter what strategy the communi-
N . . .
::. - cator employs. The jammer designs his system assuming the communicator will

. !.r somehow find out the strategy he is using and then design the optimal communi-

':- L" D
. cation system. In Case I the smallest rate that the jammer can guarantee reliable

o . .

Y communication can not be above is
e ™ : b

) min max I(G, P; F). \

1] dF dG.dP .
'
N
s, That this is the smallest rate the jammer can guarantee is obvious since for each '
- . F the rate above which reliable communication is impossible is max I(G, P; F). ‘
S In case II the appropriate mutual information can be written as an expectation of

' the mutual information for a fixed 8:

»

e I(G,P;F) = Eg(I(6,P;F))

where Eg refers to taking expectations w.r.t. dG and I(4, P; F 2 X;Y|6).

7 '7 g €xp

e . . .

. In all of our analysis we assume that the jammer and the decoder/quantizer
R, .

j;: ~ have complete information about the set of strategies possible for each other so

v

' that no secret information is considered. As mentioned previously, the performance
[, 2
A measure we consider is the largest rate such that reliable communication (in the
N
:: - sense of arbitrarily small error probability) is possible. The type of channels we
o are considering are known as compound channels. We consider the strategies :
o . (distributions) by the jammer to be constant for a whole codeword as opposed to 3
': (possibly) changing after each symbol of a codeword which would correspond to an
L J ¢
v I I
PN

. R
)
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arbitrarily varying channel. For compound channels the capacity with finite input
and output is well known to be the maximum of the minimum mutual information.
The minimum is over all possible transition probabilities and the maximum is over
all probability distributions on the input to the channel. Thus, using the maximum
of the minimum mutual information as the performance measure corresponds to the
largest rate such that reliable communication is possible no matter what strategy
the jammer employs. We are now ready to state the results. In brief our results
show that when the decoder is informed of the quantization rule then (under
a compatibility assumption), there is a saddlepoint in cases A and B, i.e. the
jammer’s rate and the communicator’s rate are equal (Theorem 5). However, when
the decoder is not informed of the quantization rule then the jammer’s rate and
the communicator’s rate may differ. However the optimal distributions, F' from
the communicator’s point of view and the G from the jammer’s point of view are
finite dimensional (in all the cases A, B, C and D) (Theorem 1). This converts a
functional optimization problem into a finite-dimensional non-linear programming

problemn.

3 Case AIl: Decoder Uninformed

The communicator has to determine the distributions (dG(8),dP(z)) that
maximize the amount of information I(G, P; F) transmitted. The jammer has
to find the noise distribution dF(z) to minimize the information received by the

decoder. Thus, the quantizer’s goal is to achieve
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- min I(G,P; F)
T dG(8) P (z) dF(s)
o :
' ) .
> whereas the jammer wants to achieve
v
2 1
o ,\. min max I(G,P;F).
o dF(z) dG(6).dP(2)
OIS In this section we show that for any choice of strategy of either player there is :
Py
(V]
> a simple characterization of the optimal reaction strategy of his opponent.
.
L v,
& Theorem 1: a) The jammer can achieve the minimumin __max min (G, P; F)
dG(8), dP(z) dF(z)
with a distribution concentrated at at most M(L — 1) + 2 points. '
b) The communicator can achieve the maximum in min max I(G, P; F) X
‘ dF(z) dG(6), dP(z) . s
l with a distribution concentrated at at most M(L — 1)+ 1 points.
;j:f Discussion: Theorem 1(a) says that the communicator in trying to achieve )
::: max min (G, P; F) has to consider only reaction strategies of the jam-
. dG(8), dP(z)  dF(z)
, L mer that have a finite number of points of support, i.e. for each (dG(8),dP(z))
N
X
": ) chosen by the communicator the worst-case jammer distribution may be assumed
w, - y
e, to be concentrated at a finite number of points and this number is bounded uni-
e formly (in (dG(6),dP(z))) by M(L—1)+2. It follows that for a fixed quantizer (i.e.
A
. no randomization of the quantization) the worst-case jammer is one who chooses
~ such a finite-dimensional distribution. Similarly Theorem 1(b) says that the jam-
2 : mer may, from his perspective of trying to achieve H}](El) dG(gl,%xP(z) I(G,P; F),
::] consider only finite dimensional reaction strategies on the communicator’s part.
A
o 13
s 7
) ip J
)
2% R

rrrr-.—rr._-

R AR A RN

AR A A S G A

..f < 4 I' I -l'\-l' W W .f o f A .r\.(g.r P N ,\f w .r_r \'\'\'\' x'




v
Ty

NNME »
.l

...

- _--..

b \_-:'_-
.:*_\._' -,
oo

S
-

SN
"';.‘;t.;-'_'. -
PR -

L4
'."- ‘s *»
.
LA

s,
’

AN

s s
‘f{’-.\":'\]
5 AR AN

P A
e

A
1N
.

To prove these resuits we use the following facts: (1) the convexity and con-
cavity properties of the mutual information function (it is convex in the channel
transition matrix and concave in the input distribution), (2) the equivalence of
weak convergence with Levy convergence in our situation [Hegd 87] which we use
to show the continuity of our objective function in the strategies as well as com-
pactness of our strategy sets (this allows us to conclude that there is a worst case
jamming strategy and a best case communicator strategy) and (3) Dubins’ Theo-
rem in order to demonstrate that the optimal reaction strategies are described by
distributions concentrated on a finite number of points. Dubins’ Theorem allows
the extreme points of certain convex sets to be written as finite linear combinations
of extreme points of larger convex sets.

Proof of Theorem 1:

We prove part (a) in detail. The modifications required to obtain part (b) are
obvious. We start by first proving two intermediate results. Lemmas 1 and 2.
Lemma 1: [(G.P:.F) is a Levy-continuous functional of dF{z) for any fixed
dG(8).dP(z)).

Proof of Lemma 1:
First we note that for every (dG(6).dP(z)).I(P,.) is a convex function of

P,r Csiz 81, pg. 30] , i.e.,

liaP,, + (1 =a)P}) < al(P),) + (1 —a)({P}) 0 < a <1

vT
and
plylr.z1 = / piyir. 8.z a1 8)
)

L
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is a continuous function of z (since p(y|z,8, z) is continuousin z and p(y|z,8,2) <

1, this follows from the Dominated Convergence Theorem). Also

pwle) = [ [ plule,6,2) dG(6) dF(2)

= I/{ plylz, 2) dF(z).

Hence p(y|r) is a Levy-continuous functional of dF(z) and therefore P,, is a
Levy-continuous functional of dF(z).

Now I(G, P; F) is a convex function of P,, and hence it is continuous in
the interior of the finite-dimensional set W of all stochastic matrices. (Thus,
I(G, P; F) is continuous at any point P, such that at least one row of P, is
not a one point distribution, i.e. P,, is not deterministic). Hence, I(G, P: F) is
a Levy-continuous function of dF(z) for any fixed (dG(0),dP(z)). a

Let S £ set of all probability distributions on the Borel subsets of K, and
S' 2 (dF(z) € S: / f(z) dF(z) = K} (5)

be a hyperplane in S.
Lemma 2: (G, P;F) achieves its maximum (minimum) in S?.
Proof of Lemma 2:
We note that S is compact in the Levy topology [Hegd 87, Appendix CJ.
Also S! is a hyperplanein S which is closed (since dF(z) — [x f(z)dF(z)
is Levy-continuous) in the Levy topology.

Hence S! being a closed subset of a compact set is itself (Levy)compact.
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Thus Lemma 1 asserts that for fixed (dG(9), dP(z)),I(G,P;F) is a Levy- . E'_
\.:'P
continuous functiorral on the compact set S'. Hence it achieves its minimum (max- - :::
'-': \-F
imum) at some point dF*(z) € S!. a -
The above lemmas are now used to complete the proof of Theorem 1. ?," |
- ',n,
A
From Lemma 2 we know that I(G, P; F) achieves its minimum in S!. Denote ) :’.:
v, Ny
oty
the corresponding P,. as Py, = [p*(y|z)] ie. 2 i
5
P = /K /e p(ylz,0,2) dG(8) dF*(z). (6) N
|. f
5 A
Now consider the set LY ' ‘
A = {dF(z)eS': /K /9 p(ylz, z,6) dG(6) dF(z) s
hY ?'-
.
= p(sle), z€Aye B (7) R ;
where B! = {0,1,...L—2}. Theset A istheintersectionof S with M(L—1)+1
hyperplanes viz. S' and the M(L —1) hyperplanes . :
f_.-
he = (dF(:) € 8': [ [ plylz,20) dG(6) dF(2) = p"(wla)}.  (8) £ ¥
L
Furthermore: ‘\-', ol
Y
S is convex. " g-l: ‘.
-
s
S is linearly bounded (S being compact in a metric space is bounded and hence N :;-.:::
o
its intersection with any line is bounded).
Ky
| 2
S being a compact subset of a metric space is closed and any line { in the metric s .'{5
">
space is closed. Thus S is also linearly closed. - g’
S
-~ ‘.\
o
~
a»
CO

&, '-ﬁ;-r N SO N ) d‘\-".f,_(\-‘\l'\-'\-’_-f\r Fa
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Hence we have that S is a convex, linearly closed and linearly bounded set.
By Dubins’ Theorem {Dubi 62] we can conclude that since A is the intersection
of S with M(L -1)+1 hyperplanes, every extreme point of A is a convex
combination of M(L — 1)+ 2 or fewer points of S.

From our construction of A we know that I(G, P; F) is constant on A. Hence
for fixed (dG(9), dP(z)) , I(G, P; F) assumes its minimum value at an extreme
point of A also.

Hence, I(G, P; F'} assumes its minimum value at some point dF(z) which is
a convex combination of M(L — 1) + 2 or fewer extreme points of S.

Since the extreme points of S are the one-point distributions, we can finally

assert that for each (dG(8),dP(z)) the jammer can achieve the minimum in

max min I(G,P;F)
dG(8), dP(z)  dF(z)

with a distribution concentrated at M(L — 1) + 2 points. This concludes the
proof of (a).

For channels which are symmetric for each 8 and 2 i.e. p(y|z;,2,0) is some
permutation of p(y|z;,z,0) we see that the set A is actually the intersection of S
with (L — 1) + 1 hyperplanes only and hence part(a) of the theorem holds with
(L-1)+2 =L +1 instead of M(L — 1) + 2. For M-ary symmetric channels,
i.e. channels with M inputs and M outputs and such that for each 8 and :,

p(yilzi, 2,0) = 1 — € and p(yilz;,2,0) = T t # j, the bound on the number

—
M —

of points of support reduces to 3.
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For (b) we note that the jammer wants to achieve

min max I(G,P;F).
dF(z)  dG(8).dP(z)

This may be written as

min max C(G,F)
dF(z)  dG(d)

where C(G, F) £ 5‘;?)5 I(G,P; F).

We note that similarly to Lemma 1 for any fixed dF(z), C(G,F) is a con-

tinuous functional of dG(6). (Simply note that C(G, F) being the maximum of W
’ou
functions convex in P,, is also convex in P, and proceed as before). Using our « "':
hypothesis that p(y|z,0,z) is continuous in @ we can show that “ r:
: s
RN
min max C(G,F -
can for any dF(z) be achieved by the decoder/quantizer by a distribution dG(6) = %
%
that is concentrated at at most M(L — 1)+ 1 points. A
-, :.-_
' (l
Again for symmetric channels we note that part(b) of the theorem holds with i’
L instead of M(L — 1) + 1. For M-ary symmetric channels this number is 2. The v :::'
LS
Ny
number of points of support is one less than Case A as we have not imposed any o
4 &
. '\ -
constraints on the distributions dG(8) chosen by the quantizer. =) i
oo
3.1 Necessary and Sufficient Conditions M
A
We now characterize the aforementioned finite-dimensional distributions by o
means of necessary and sufficient conditions. We first briefly introduce the neces- N
r
»
sary definitions and results from optimization theory and then specialize them to A
oo
our cases. )
o
b
'8 R
N
RN
fay
N
.
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N
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! Let  be a convex set and let f be a function from Q into R. For some g
WS
i i
S - fixed zo if for all z .
n o
-¢ U
im  [(L=@a)zo+az) ~ f(zo))
. im (9)
At al0 a
. exists f is said to be weakly differentiable at zy, and the above limit is denoted
< as f, (z), the weak derivative at zo. If f is weakly differentiable in  at z, for all J
& To in 1, f is said to be weakly differentiable in . We now state an Optimiization
N Theorem that follows from [Luen 69, pg. 178].
" Optimization Theorem: Let f be a continuous, weakly differentiable, convex-
O cap (concave) map from a compact, convex set to R. Let )
w :
A L
v C= sup f(z). (10) ]
z €0
]
. Then :
:.- <
1. C = max f(z) = f(zo) for some zo, € (. ;
k :
= 2. A necessary and sufficient condition for f(zo) = C is f, (z) < 0 for j
= all z € 0. :
- Constrained Optimization Theorem: [Luen 69, pg. 217] Let 2 be a convex
subset of a linear vector space and f and g convex-cap functionals on 2 to
- R. Assume thereis an z; € Q such that g(z,) <0 and let
< C'2  sup  flz) (11) .
r €N
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If C’ is finite then there exists a constant A > 0 such that

C' = sup [f(z) — Ag(z)). (12)

T €N
Furthermore if the supremum in the first equation is achieved by zo € Q0 and
g(zo) < 0, it is achieved by z, in the second equation and Ag(zo) = 0. [Luen

69, pg. 217).

Now given any dG(6) and the power constraint we define

U(Ks,,G) &  sup - I(G,P;F) (13)
F €8
he < Ky

where hp 2 fx f(z) dF(2). To simplify notation we define
D:S — R by D(F) = /K F(2)dF(z) — Kj. (14)

Using the Constrained Optimization Theorem we will infer in Theorem 2 that

there exists a non-negative constant
A = AG,K;) for D(F) < 0 such that

UG, K1) = sup [-1(G, P; F) = AD(F)]. (15)

We now formulate necessary and sufficient conditions for the characterization of
the optimal distributions of Theorem 1 in the following two theorems.

Theorem 2: U (G, K,) is achieved by a distribution Fy € S satisfying D(F) <
0 and a necessary and sufficient condition for U.(G,K;) = —I(G, P; F,) is that

for some constant A > 0

/K (=i(2;G, Fo) — AM(2)|dF(z) < —I(G,P;F;) — MKy (16)
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] forall F € S
: (ylz,z) dFg (2)
: where i(z;G, Fp) 2 >z P(2) p(ylz, 2) log Ip
% ’ > p(z) [p(ylz,2) dFo(2)
Proof of Theorem 2: :
('\
o D :S - R is clearly linear, bounded, convex-cap, continuous and weakly
. differentiable in S with Dy, (F;) = D(F;) — D(F). By choosing F, asa
N
" distribution with unit mass appropriately we can infer that D(F;) < 0.
i:; Next we show that I(G, P; F) is convex in F.
a0
P I(G,P;aFy + (1 —a)F;) = I(P,; (G,aF, + (1 — a)F}))
P
= 1( /K /e p(ylz,8,2) dG(8) (adF; + (1 —a)ng))
~
= = I(aPy: (GiF) + (1-a) Py: (Gi Fy))
: ‘ = I(aP,, +(1-a)P.,)
_ < al(P,) + (1-a) I(P,,)
- (by the convexity of I(.) wr. t P,;)
™ b = al(G,P;F)) +(1-a) (G, P; Fy). (17)
W
." o Then, since U.(G,K;) is finite we can infer from the Constrained Opti-
o
mization Theorem that there exists some constant A > 0 such that U, =
e,
b s sup [—I(G,P;F) — AD(F)).
o, FeS
:.' ‘ Now v show that I(G,P;F) is weakly differentiable at all F € S.
L -
. ‘ Let L(a) = I(G,P;aF, + (1-a)F},). Since I(G, P; F) is convex in F , L(a)
. -
~ 2 is convex in a. Therefore A(-Q)TL(O—) is non-decreasing in a and bounded
S -
‘o o from below and thus lim L(a) - 1(0) exists. Furthermore
P g al0 a
(-, 21
- -
po
N
i) fl
hT: .
~ %
o

-'vl'_'.'.'.f_:.f_;.( e o e e A AL LU Y T e B AT R e N A EREATRS




o,

S

Lemma 3: I, (G,P; F;) = [ i(2;G,Fy) dFy(z) — I(G, P; ). o

LA N NS I I Te gt

Proof of Lemma 3: ~

ol
'

See Appendix A.
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We now have that I(G, P; F) — XA D(F) is convex-cap, continuous and weakly -.Tj -
- -
.;,:-' differentiable in F. Thus, by the Optimization Theorem there is a distribution 5
: function Fy € S such that U.(G,K,;) = I(G,P;Fy) — AD(F,). The necessary :

: and sufficient condition becomes ‘-:: :

—I'G,P;Fo' (F) — ADg, (F) < Oforall F € S (18) Z :

or f;

[ 5i(z G, Fo) = Af(2)ldF(z) S ~I(G.P; Fo) = Mg, (19) g

If hr, < K; the power constraint is trivial and the constant A is zero i.e. A

D(Fy) < 0 but XA D (Fy) = 0. Thus the necessary and sufficient condition is i

established. o : :

From Theorem 1 we know that it is possible to find Fy from the set of ‘
distributions with a finite number of points of support. Finding such an F
entails determining the set of points of increase as well as the amounts of increase

of F, at those points. Let FE, denote the set of points of increase of F,. We - -

now show g

Theorem 3: Let Fy be a probability distribution satisfying the power con- :

straint. Then Fy achieves U.(G,K;) iff for some A >0 :

Cl) ~i(z G, Fo) < ~I(G, P; Fo) + MJ(2) - K.) ;

forall z € K. A

22 ~ 9

&

R R N R U W LN NN S R O S N N WL E Lt S Ry
B e A ) : A N AT A AT AT AT AL O AT T




Ou® Aat et Jat ¥ It AV 0 At et 00 5 e e et et e e it iaP St s RS et o5 0a® hat it ¥ at Bet 4 5 b Rl it Rt b et b 0 S 4

;\
A
+

-_m
a

Nwy

C2) —i(z;G,Fo) = -I(G,P; Fo) + M f(2) - KJ)

v,
:";{ for all 2 € F,.
. Proof of Theorem 3:
"
The sufficiency is clear because if both conditions C1 and C2 the conditions of
::.", Theorem 2 hold. We show the necessity.
s Assume that Fj is “optimal” but C1 is not true. Then there must exist some
i zy € K such that —i(z;G,Fy) > —I(G,P; Fo) + A(f(z) — K,). Let Fy(z)
N
;'5 be a probability distribution with a unit increase at such a point z; € K. Then
¥ [ [=i(#G, Fo) = M) dF(z) > ~I(G,PiF) - AK;  (20)
i which contradicts Theorem 2. Hence C1 must be true.
Now assume that Fy is “optimal” but C2 is not true. Then since C1 is true
‘. -i(z;G, Fo) < =I(G,P;Fy) + Mf(z) — K;) forall zin E' where E’ is
! some subset of E, with positive measure, i.e.
/ d Fy(z) = ¢ > 0. (21)
s E
’ Since [g _p dFo(z) = 1—c andon E, — E’
i i(:G, Fo) = I(G, P; Fo) + Mf(2) - KJ) (22)
;; and
¥ [ (@6 F) = AF()) dFy(a) = [ [i(:G, Fo) - Af(2)] dFo()
~ + [, _p =G Fo) ~ Nf(2)] dFo(2)
- 23
i
"

e e p e e e e e e A e mn e P e arn e m e tamataratnean s
N NN aYa s epeavatanae. e aipen o o e et et At AT A e oA A - ne .
NI S A AP ACATIL S I A A SRRV L0 LA L SR A EE S S o A P A R PR A e P P A SOOI BT e T AT AT P

P S0 S R Y N N



{"”"“' T P T R Y R o R R R o I T T e DTN WL At pia'ata gt ste p e ite SRR A ta 0 ot iadieg u i Ut pg® At b A i

d

o
"
¥
p -
l : N
: [ [5G, Fo) = A(f(2)) dFo(2)
- (- Eo
p ‘:\
E we have N
p
y ~I(G,P;Fy) — AK; < —-I(G,P;Fy) — AK; ie. a contradiction. (23) s
3
3
9 .
; Hence C2 must be true too. g :
Theorems 1 and 3 reduce the calculation of the distributions describing the .
) reaction strategies to finite-dimensional non-linear programming problems. They )
] %
p !
b can be used to simplify the search for conservative strategies which are optimal for S
i
j, either player. In Theorem 4 below we assert the existence of conservative strategies -
“ ~
Z DA
b for each player. Y
s
Theorem 4: For the game described in Case Al, there exists a conservative

strategy (dG(8), dP(z)) for the communicator and a conservative strategy dF(z)

*
2N el

for the jammer, i.e. strategies such that -\. ":.

i)min I(G,P;F) = max min  I(G,P;F) and (24) N

dF(z) dP(r)dG(8) dF(z) o

i) max !'G,P;F) = min max  I(G,P;F) (25) >
‘ 4P(z),dG(8) dF(z)  dP(z),dG(9) ‘<
i

-
\
-

‘ Proof of Theorem 4:

From Lemmas 1 and 2 we note that

a) I(G, P; F) is lower-semicontinuous in df(z) for each (dG(8),dP(z)) and
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b) There exists (dG(6),dP(z)) 3 I(G, P; F) is lower semi-compact in dF(z).

Theorem 4(i) now follows from a fundamental existence theorem [Aubi 82, pg 209,

Th. 1]. Theorem 4(ii) follows similarly. w
3.2 The Remaining Cases

Case BI: With F(z) now recognized as a one-dimensional distribution Theo-

rems 1 and 2 are easily seen to be true.
M
Case CI: We redefine S as follows: § = |y L; where L; is the space of

1=1
product distributions such that

Pr(Z;>20)>0

Pr(Z;=0)=1j#4.

By previous arguments each L; is Levy compact and hence so is S. Now the
proofs of Th. 1 and Th. 2 follow as before.

Case DI: We perform the analysis by fixing D — 1 of the D distributions
dF,,...,dFp. By minor modifications in the proof of Lemma 1 we see that I(X;Y)
is a Levy continuous functional of dF;(z) for each i. Defining S and S! similarly
except that now both are spaces of distributions of dF;(z;) instead of dF(z) we see

that for each (dG(8),dP(z)) the jammer can achieve the minimum in

max min I(G,P; F)
(dG(6),dP(z)) dF(z)=dFi(z1).dF3(2)....dFp(zp)

25
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with a distribution dF; concentrated at at most M(L — 1) + 2 points.

Since i is arbitrary we can assert that the jammer can achieve the minimum
in (16) with distributions dF;, t =1,...,D each of which are concentrated at at
most M(L — 1) + 2 points. Part (b) of Theorem 1 and Theorem 2 are easily seen

to be true as stated for this case.

4 Case AIIl: Decoder Informed

We have an arbitrary joint distribution on Z,,...,Zp the jammer chooses
dF(z) and knows that the decoder knows ©. The communicator chooses dG(6)
and further the decoder knows 6.

In this case we make a “compatibility” assumption, that is, for every 6 and
dF(z) the capacity-achieving input distribution dP(z) remains the same.

While “compatibility” certainly restricts our model applicability, we show by
example that it is often a worst-case assumption. For instance, we know [Dobr
59] that if M = L and if the jammer’s strategy set is restricted such that for each
distribution dF(z) and quantizer 8, Prob { error|z } < ¢ for every z, then the

saddle-point strategy for the jammer is to choose a distribution such that

plylz) = -;7 for all y,xif6>1-r‘I

and

pylz) = y# zife<l-&

= l-¢ y=z

and the saddle-point strategy for the communicator is to choose a uniform dis-

26
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tribution on the input alphabet. In our model this corresponds to choosing the
canonical noise variables so that p(y|z, ) is a symmetric channel for each 6. Such
symmetry (and thereby “compatibility”) is obtained in a number of other situa-
tions as a saddle-point strategy. Under certain conditions, when we have convex
constraints in the M noise variables affecting the M inputs of the channel which
are invariant under any permutation of the M variables (i.e. a “symmetric” con-
straint) then the choice of a uniform distribution on the input and the choice of a
symmetric channel are saddle-point strategies for the communicator and the jam-
mer respectively (see Appendix B). To describe one more example, if we have M

inputs and M outputs,

Y¢ = Ny 1=1,,M Z#]

y; = A+nJ l=]a

n; are N(0,v;),1 = 1,..., M independent random variables and there is further
the constraint " v; = ¢, then, from arguments similar to those in Appendix B,
it can be seen that the saddle point strategy is to choose v; = -& and a uniform

M

distribution on the input.

Utilization of the “compatibility” assumption allows us to write the above as

min max Eg(C(6, F)).

and

max min Eg(C(6, F))
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where C(8, F) = 51’1,:(:.:() I(6; F) and I(6; F) = I(X;Y60).
In this section we prove the existence of a saddlepoint. The main result is

stated in the following theorem:

Theorem 5:  There exists a pair of distributions dG*(8),dF*(z)) such that
EG(C(9,F7)) < Ec-(C(0, F7)) < Eg-(C(0, F))

for all feasible dG(8),dF(z), i.e., (dG*(8),dF*(z)) is a saddle point for the game
in case All.

Proof of Theorem 5: The set of all feasible dF ’s i.e.
(dF(z) : /K f(2)dF(z2) S K;} 0<z <b

is clearly convex and compact. The set of all dG ’s is also convex and compact.

We note that for any fixed dF(z),C(9,F) is a continuous function of 6.

Py |2,0) = [ plulz,0,2)dF(2)

is by our earlier arguments a continuous function of 4.

Hence, P, (8) is a continous function of §. Also C(8,F) = C(P,.(6)) and
we know that C(P,:(0)) is convex in P, (6).

Therefore, for every § € © > P,.(8) is not deterministic, C(P,.(8)) is a
continuous function of P, (). Honce, for fixed dF(z),C(8,F) = (C(Py:(9))) is

a continuous function of 8 and so

Eg(C(8, F)) = /e C(8, F)dG(8)
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:; g Since Eg(C(0, F)) is linear it is also a concave function of dG(8) in dG(9)).
*I
Y Next we note that C (8, F) is convex in dF(z) for each 0 since C(8, F) = C(P,.(9)).
M Hence
4
E.*_ - C(8,aF' + (1 —a)F?) < aC(8,F') + (1 —a)C(8,F?) 0 < a < 1.
A '{:
N Taking expectations w.r.t. G
7y :"'
N
R, /e C6,aF" + (1 — a)F?)dG(6)
NN
:'“_; < /e(aC(G, FY) + (1 —a)C(8, F*))dG(9)
Y
.
% i . Eg(C(8,aF! + (1 —a)F?)
s .
- ‘ < aEg(C(8, F*)) + (1 — a)Eg(C(8, F?)).
2
':'j ,‘ Consequently, Eg(C(8, F)) is a convex function in dF(z).
AL
r, Also Eg(C(8, F)) is Levy-continuous in dF(z). To prove this it suffices to
:;: 7{‘ show that for any sequence F, converging to F in the Levy metric
J‘: l.",.'
;:2 » Eg(C(8, F,)) — Ec(C(8, F)).
5
_,' ?;i _: Since convergence in the Levy metric is in our case equivalent to weak conver-
s~
.
o gence [Hegd 87, Appendix C] it suffices to show this for F, = F. However,
b
N
lim E(C(0, F.)
=li 0,F,)d
m /e C(0, F,)dG
» 29
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= /e li'r‘n C(0,F,)dG (by the Dominated Convergence Theorem)
= /e C(8, F)dG (since C(4, F) is Levy — continuous in F)

= Eg(C(8, F))

which proves Levy-continuity in dF(z). From these properties of the objective
function and the convexity and compactness of the feasible strategy sets we recog-
nize that the hypotheses of the Sion minmax theorem of game theory are satisfied
[Aubi 82, Th7, pg 218]. This concludes the proof of Theorem 3. 0

We note that these saddle-point distributions need not have finite support.
However, in this case we have an equlibrium and with no further knowledge of
each other’s choice of strategy, the jammer and the quantizer should be content
utilizing dG*(0) and dF*(z).

Using the Optimization Theorem and the Constrained Optimization Theorem
we can derive necessary and sufficient conditions at these saddle points. Given any

dG(0) and the power constraint we define

U.(K;,G)& sup —Es(C(4,F)) (28)

and given any dF'(z) we define
VJ(F) & sup Eg(C(8,F)) (29)
G €¢

where G is the space of distributions on ©. Then we have

Theorem 8: The saddle-point strategies dF*, dG" satisfy to the following inequal-
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! 1tles:

5 Y Eoe([(=3(2:6, F") = \(2))dF(2)) < Ec-(~C(0,F")) = MK, (30)
'« B for some A > 0, for all F where

.

L 0.) & £ Playls. s 0 log e

A

5 Also

; ‘b\: Ec(C(6,F7)) < Eg-(C(6, F7)) (31) )
./-3 ;‘; for all G.

Proof of Theorem 6:

. For any F denote the weak derivative of Eg(C(, F)) at Go as D, (Ec(C(8, F)) ;
'. \ and for any G denote the weak derivative of Eg(C(8, F)) at Fy as Dg,(Eg(C(8, F)). .
. Using Lemma 3 and the Dominated Convergence Theorem, we have

Dr(Ec(~C(6, F2)) = Eo(~ [(2:6,F)dF) + Eg(C(8,F))  (32)

‘-Isl~ll."ls'~ y
N

for any F\, F,.

X o

o)

X

NI Also

gy

b Dg,(EG,(C(8,F) = Eg,(C(8. F) — Eg,(C(6, F). (33)
:’: -‘ Now letting F; = F*,G, = G* in the first equation we have, using the Con-
__'.: strained Optimization Theorem and the Optimization Theorem and the properties
.

'-_ of Eg(C(0, F)) as in Theorem 2, that a necessary and sufficient condition for F*
7

> to achieve U .(K,,G") is
e EG.(_/(I(z;o,P) — Af(z2))dF(z)) < Eg.(-C(8,F*)) - AK (34)
- 31

=
N
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for some X > 0, for all F. o)
) N
‘ Letting Fy = F*,G; = G* in the second equation gives us similarly that a PR
, Ry
necessary and sufficient condition to achieve V (F*) is .
% L
3 'J' _I
» - ." y
[ Eg(C(0,F)) < Eg-(C(8, F*)) (33) -4
i o
] .J‘ u,
' for all G. oo
Since at a saddle-point U (K;,G*) and V (F*) are simultaneously achieved, > '\j
the theorem follows. o (
N X
> 2
4.1 The Remaining Cases l
v
hY
Case BII: Theorem 3 holds with F(z) as a one-dimensional distribution. A :-f.
b )
p Case CII: Although S is compact, it is not convex and so we cannot demonstrate - :."':
that there is a saddle point strategy. ) N
Case DII: Again we have that Eg(C(8, F)) is a Levy continuous functional . :
k
of dG(9) and is concave in dG(8). Also Eg(C(6,F)) is Levy continuous in ) g
A .‘.
: (dFy(2),....dFp(z)). However Eg(C(8, F\,... Fp)) is not convex in (Fy,..., Fp). '_'.:
b o
Hence we cannot assert the existence of a saddle point in this case. oo
4.2 Fixed Quantizer =
-~
Before concluding this section we also point out that if we did not have ran- \
NN
domized quantization then without “compatibility” the game would have a saddle- ]
-.:~u
point where the jammer's saddle-point distribution need be concentrated at at most o -:‘_:
AC4 ’.\l
M(L — 1)+ 2 points. We summarize this in Theorem 7. :
[ o~
»
A
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Theorem 7: For any quantizer 9, there exists a pair of distributions dP*(z),dF*(z)

N
P . such that
.'q :.

. I(8,P,F*) < I8, P*, F*) < I(8, P", F) (36)

L.
.E: = for all feasible dP,dF. Moreover dF*(z) can be chosen to be concentrated at at
:J'.: most M(L — 1) + 2 points and necessary and sufficient conditions for dF*(z) and

. .

b dP*(z) are for some A\, ; >0
iy <
Iu
. —i(z;0,F*) < ~1(8,P*, F*) + \,(f(z) — KJ) (37)

3
v

r for all z € K and

K
\.:: ~
" g — (2,0, F°)y=-I1(8,P* F*)+ \(f(2) -~ K,) (38)

:::

& ‘ for all z € £y where 1(.;.,.) is as defined in Theorem 2 with G concentrated on 8.

=

:‘ Also
- L(0.P",F") = X, (39)

ol for all z 3 P*(z) > 0 and

L L.(6,P" F*) < X, (40)
=

for all z 3 P*(z) = 0 where
T
T 2 plylz,6)
T 1.(8, P, F*) = ylz,8)lo - .
2 . (6. 1) = 2 rlule ) log e )

T

_.‘; Proof of Theorem 7:

[,

o From the proof of Theorem 5 we know that all we need to show is that I(6, P, F) !
i |
:'.: o is (Levy) continuous in dP(z). We show this by considering any sequence dP,(z) —
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dP(z) and showing I(8, P,, F) — I(6, P, F). Since x belongs to the finite set A, N
weak convergence is equivalent to convergence in any finite-dimensional metric. ot
b3
i
Now
[1(68, Pa, F) = 1(6, P, F)| = | X Pu(z)plylz, 6) log =—24I2:0) T
P Xz Pa(z)p(ylz, 0) )
p(ylz, 6) R
- P(z)p(y|z,8)lo
2, Pz Olog = e d) ‘
< | Palz)plylz, ) log —RLZE) 3
- Ty " , zt P,.(:r)p(ylz,ﬂ) '
p(ylz. ) w
- P.(z)p(ylz,8)lo AR
2, Prloilul O log =gy
p(y]z,6) -
+ P.(z)p(ylz,0)lo
; |2 PR, 0) 108 oty 12,) 35
o
3 p(y|z,6) bl
- P '.’t 0 lo Doa
| 2, PRl Olos &gyl i
S
X: Pu(z)p(ylz, 0) o
‘ <|Y P.(z)p(y|z,0)||lo .o
, 2 Fal=p(ylz. Ol ) 5%
| R
& + Y D|Pi(z) - P(z)] (41) ;f
| p(ylz.6) =
where D = max;, z,0)log ————— b
Pyl 0) log . pylz, ) X
E: Pa(2)p(yl2.9) T
< LD|lo o
| o8 Pplulz.0) 9
/, + Y. DIP(2) - P(z)l. (42) g
| .'l
l Again since A is finite we can say that for all § > 0 3N such that for alln > N -
®
| P.(z) N
1-6 < <1+6Vre A RSN
P(z) Y
N
Pu(z)p(y|z, 0) o
1-8 S 5———-<1+6VzecA LY
P(z)plylz.0) )
o
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T P(x)p(yz.0)

By the continuity of the log function we can say that Ve >0 36§ >0 3

<1+6 VreA (43)

2z Pa(z)p(ylz, 8)
>z P(z)p(ylz,8)

— €< |log

| <e

The second term in (41) can also clearly be made < ¢ for sufficiently large n.
Thus the continuity of I(#, P, F) w.r.t. P is confirmed and the first part of the
theorem follows. The bound on the number of points of support of dF* follows
from Theorem 1(a). The necessary and sufficient conditions are derived as before

from Theorem 3 and well-known results about channel capacity [Gall 68, pg.91].

O

5 Conclusions

We have constructed fairly general channel models which are capable of repre-
senting a number of jamming situations. The jammers we have considered have
all been non-adaptive and using results from the compound channel we are able
to give operational significance to our minimax performance measures,i.e. we can
assert the existence of encoders and decoders which can perform at arbitrarily low
probabilities of error at rates close to our performance measures. Qur analysis is
also clearly applicable to many restrictions on the jammer’s strategy set other than
the ones we have considered.

In the case with the decoder uninformed (case I) we have shown that the worst-

case jammer strategy (as well as best communicator strategy) needs only be one of

35

N T T T T p T e T AT RPN N e et . T AT AT

X

o,

5 ~ .- ~ w0 Th T A YT T
T A AT T A A Ry

e P Wy T,




P T W,

L BRI PR e A S e "y Cu e o "a¥a® "
l\f NSV PRI -’.‘-’.P;{!l’.ﬁl’;&ihﬁh. by ..I‘:'A.A'.‘:'.A} .E.'J_\ L.:AEL

v ~r
T T Ta "y oGl a2t 450 e AR A" a % _wu_r.r",‘.r,-r;_v', L ARl A g o {T‘_‘f\v'\"r:_"{\r. g v""v'[v'!f_\"__w_?'kﬂ’vvy‘. T aV o Ne ¥y Loy

»
2y
e
o
)
g
L
RN
LAY
Y,
o
the class of distributions with finite support. We have a bound on the number of A
these points of support in terms of the sizes of the input and the output alphabet. ~
Y
Thus we have reduced the computation of the worst case jamming strategies to a
finite-dimensional non-linear programming problem. Moreover we can characterize \* :".:
h ’
T
these distributions by necessary and sufficient conditions which are fairly easy to PUEN
SN
R,
test. ;
YN
In the cases with the decoder informed we reduce the communicator’s strategy N
set (either by using the “compatibility” assumption or by fixing a quantizer) . In .
.o
this case when we have convexity with respect to the jammer’s strategy (as in cases ’ 4
AIl and BII) we are able to demonstrate the existence of a saddle-point strategy. . :.i
SRENAY
For the case with non-randomized quantization we are further able to characterize . ﬂ
these saddle-point strategies using the earlier theory. SN
-
\
As we have mentioned earlier all the above presupposes non-adaptive jamming. N .:,:.i
RS :_-.
The compound channel model which we use indirectly by our choice of objective =
function is appropriate to use in this case. We can allow for more sophisticated Z'\" 1
. o . . 3
jammers if we incorporate the cases where the jammer’s strategies are allowed to AR
B -"-‘
RSAS
depend on the previous (and present) channel inputs. The appropriate channel ;"-1
" _-.-.,_
model to use then is that of the arbitrarily “star” varying channel (A*VC ) [Csiz :—; A
< ~
’.
81, pg.233]. This model generalizes the arbitrarily varying channel (AVC) and - ::
.
oo
includes it as a special case. It is known that the m-capacity (i.e. capacity with 'Y
¥
maximum probability of error over all the codewords) of the A*VC is the same as :'.:', R

MY

that of the corresponding AVC [Csiz 81, pg.232). This capacity is known for the

;{1" :/_".'.'/ -'
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case of binary output alphabet (and finite input alphabet) and is known to be equal
to max min I(X;Y) where X and Y are the input and the output respectively, W
is any channel chosen from the set of channels W and W is the row-convex closure
of W [Csiz 81}). In our case the jammer’s strategy set corresponding is already

row-convex closed and hence the appropriate programs would be

a) For the communicator:

max min I(G, F)
(dG(6).dP(z)) dF(z)

b) For the jammer

B0 et (G F)

which is the same objective function as we have used. Similarly, in the case with
decoder informed we would obtain the same objective functions. Thus, all the
results derived in the previous chapter for the case of mutual information can be
extended to the case of the A"V C channel with binary output. This model may
be viewed as a worst-case representation of adaptive jamming. Unfortunately the
m-capacity of the AV is as yet unknown for output sizes greater than 2. On the
other hand the a-capacity of the AVC (i.e. the capacity with average probability
of error) is known to be either 0 or else max min I(X;Y) where W is the convex

dP(z) WeW

closure of the set W to which W belongs [Csiz 81, pg.214]. Since in our model
the set of channels is convex as well as row-convex the a-capacity is known to be
greater than 0 iff the m-capacity is greater than 0 [Ahls 78]. Thus with average
probability of error whenever the jammer’s strategy set is such that he cannot force

the capacity to be 0 then all the results of the preceding chapter extend to the
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Appendix A

Lemma 3 : It (G F2) = [i(2,G, F\)dF(z) — I(G; F)

' [ p(ylz, 2)dFy
where i(z; G, Fy) = ¥, , p(2)p(ylz, z)log
l ’ > p(2)f plylz, 2)dFy
Proof of Lemma 3 : ‘

I4(G: ) = i = { S0(6) (/S plul 2,0)(1 = @)dF, + adFJ4G10)

(J [ p(ylz, 2,0)[(1 — a)dFy + adF3]dG(8))
ZP (J Jp(ylz, 2,6)[(1 — )dFy + adF]dG(0)

—Zp (f [ p(ylz,z,0)dF1dG(9)).

S plylz, z,8)dFdG(6))
):p )(J [ p(ylz,2,0)dF1dG(6)

Denoting [ p(ylz, z,0)dG(6) as p(yz, 2)

I(Gi Fy) = i - {zp ) Un(slz,2)[(1 - )dFy +adF)

Ip(ylz, 2)[(1 — a)dF\ + a dF3]
S p(@) [ plylz, (1 - )dF; + adF)

log

- /P(ylz, z)dF\log S p(ylz, 2)dFy

S_p(z)f p(ylz, z)dF,
i L p(ylz, 2)[(1 — a)dF, + adFy]
iy 3 | (@) |/ plvles2)adFiog S p(2)[7(vle, (1 — a)dF; + « dF)

- Jp(ylz, 2)[(1 = a)dFy + adF)
- [z adpiog | S e o Fi
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1 _1_ fp(ylxvz)[(l_a)dFl+QdF2]
+lim ~ rZ;P(z) /P(y|$,z)dFlloS S~ p(2) p(s]z, (1 — @)dF, + adFi]

fP(y|1yZ)dF1
- [ plolz. 1aFilog S p(z)[plylz, 2)dF,

= a + b(say).

By choosing a sequence a, | 0 and using weak convergence of (1 — a,)dF, +

C!ﬂsz to dFl

¢ = /i(z;G,F,)sz—I(G;Fl)

d Jp(ylz, 2)[(1 — @)dF\ + adF3]
b= — T z,z)dFil
da gp( )/p(yl )dFilog Y p(z)fp(ylz, 2)[(1 — a)dFy + adF,

a=0

ata=0.

Taking the derivative

2_p(x)[p(ylz’, 2)[(1 — a)dF, + adF;)
b= %P(I )/P(y|.t ,2)dFy 7T (= a)dF,  odF]

L1 pe) [otule o - ardr + ada]) [ p1z',2)(dF; - dFy)

[ o1t~ a)dFs + adFi (2 pte) [t 0P —ar) [

where d £ Ep(r)fp(ylz. 2)[(1 = a)dF, + adF;

After some algebraic manipulation it can be shown that 6 — 0 as a | 0.
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\ g Appendix B 5
A .

L:' .'.E Here we consider a communication game with two players, player A who chooses

‘. v an input distribution r on the M-ary input alphabet, and player B who chooses

o s the M x L transition probability matrix. Let X and Y denote the input and

i EE output random variables respectively and let n,; denote the distribution of the

i _ random variable associated with the conditional density p(y|z,). Let the set of all ’
E :: feasible n's (= (ny,...,nam)) be compact. The channel p(y|z) is a function of g (= !
E :; (ny,...,np)). Assume this function is linear and that for a choiceof n; =n, 1= '
=, 1...., M the channel chosen is symmetric. Let I(r,n) = I(X;Y) when A’s choice v
L -

j = is r and B’s choice is n. Let n,,...,n) be constrained by fi(n,,...,nym) < ¢ A
- I t = 1,...,c where f; is a convex, symmetric function of ny,...,nuy, ie. fiis
b invariant under any permutation of ny,...,nap. Then a saddle-point strategy exists

\J for both players and for player A it is to chooose a uniform distribution on the
.:: L input and for player B it is to choose all the components of n equal, i.e. there .
_ A exists n* with all its components equal such that :
N .
s Ir,m) < 10,20 < (") 33
”-
f-‘ where r* corresponds to the uniform input distribution.

5 Proof: Step 1: I(r,n*) < I(r*,n") y
= ’ This follows from the fact that the mutual information between the input and the

:: f output of a symmetric channnel is maximized by the uniform distribution. ‘
: Step 2: I(r*,n") < I(r*,n) ‘
- ‘ -‘
e

.
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Since I(X;Y) is a convex function of p(y|z) which is linear in g, I(r,n) is convex
in n. Moreover, given the form of the constraints the set of feasible n’s is a convex
set.

Now for any ¢ > 0 let inf I(r*,n) + € be achieved at some p, # n* . Then we
show I(r*,n") < I(r*,n,) proving that the minimum is also achieved at p*. The
use of a uniform distribution on the input and the symmetry of the constraints
implies that for any permutation of n, (nf say) we have a new channel p®(y|z)
which involves just a relabelling of the inputs of the original channel. The mutual
information I(r*,n,) is equal to I(r*,n$). Now consider all the M! permutations
of n, = n§: a € T ( all the permutations are not distinct but it does not matter).
Take the convex combination # Yaer i = n.(say). Every component of n. is
equal to 35 M n,,. Also from the convexity of I(r*,n) w.r.t. n we know that

L ] 1 [+ 3 1 - (3
I(r ,mgnl < mg;l(" yny)

= I(r*,n)
Therefore
I(r*,n.) < I(r",m)

and hence inf I(r*,n) + € is achieved at n, too. The result then follows from the

observation that I(r*,n) is concave in r.

42

. B T I TP PR N T o) ! L LI L [ LA L T S Y L ‘u
N A A A A T I R T R R X T W s N N T T A 0 0 3 T 0P TN N A %, ey

L Y
AL

AN

s

Tl




[a¥ 22" " ¢

P L AN

LML SR Y 3 B R LA BB R

FEX XL 4
a5

-

5!

1
v

Pt ol B b

A

1l

o
AENLAD

[ 4

i- [y

.«
LT

t
LS

a

.J,I
aa

i

i
s

-

el

e

0 2% 2" 08" 0,0' 0,802 23

References

[1]

(2]

(4]

(6]

(7]

(8]

[Ahls 78] R. Ahlswede, “Elimination of correlation in random codes for
arbitrarily varying channels”, Zeitschrift fur Wahrscheinlichkeitstheorie,

no. 33, pp. 159-175, 1978
[Ash 65] R.Ash, Information Theory, Interscience Publishers, 1965

[Ash 72) R. Ash, Real Analysis and Probability, Academic Press,Inc.,
1972

[Aubi 82] J.P. Aubin, Mathematical Methods of Game and Economic
Theory, North-Holland, 1982

[Blac 57] N.M. Blachman,“Communication as a game”, Wescon 1957

Conference Record, 1957

[Blac 54] D. Blackwell, M.A. Girshick, Theory of Games and Statistical

Decisions, Dover Publications, INc., 1954

[Blac 59] D. Blackwell, L. Breiman, A.J. Thomasian,“The capacity of
a class of channels”,Annals of Mathematical Statistics, no.30, pp.1229-
1241

[Blac 60] D. Blackwell, L. Breiman, A.J. Thomasian,“The capacities of
certain channel classes under random coding”, Annals of Mathematical

Statistics, no.31, pp.558-567

43

rr

s L



q v AR A e’ S mie” G g g o g
Sk S S A A RMEAARE S KAEA LA AN A B AN A O e N e A e A R A Vol Bl RV R LR LS ) P A e N

%
DN L PP A Xud A

(9] [Bord 85] J.M. Borden. D.J.Mason, R.J.McEliece,“Some information .

theoretic saddlepoints™, SIAM Journal on Control and Optimization, = \_.:
'R \.‘

Ka

vol. 23, no. 1, Jan 1985 -

": -

o

(10] [Chan 85] L.F. Chang, An Information-Theoretic Study of Ratio-Threshold :;
-, :')

Antijam Techniques, Ph.D. Thesis, University of Illinois at Urbana- 7 -:":

]
Champaign, 1985 Y
“ Ayt

e N

)

(11] [Csiz 81] I. Csiszar and J. Korner, Information Theory : Coding Theory . ::

for Discrete Memoryless Systems, Academic Press, 1981

L]
3 XX

(12] [Dobr 59] R.L. Dobrushin,“Optimum information transmission through

J " (4

a channel with unknown parameters”, Radio Engineering Electronics, » " ),

vol. 4, no. 12, 1959 ks '.::i

v

PN,

(13] [Dubi 62] L.E. Dubins,“On extreme points of convex sets”, Journal of oA
t" s

Mathematical Analysis and Applications, pp. 237-244, 1962 \ !‘

‘-_ "‘:

._,h

(14] [Eric 85] T. Ericson,“The arbitrarily varying channel and the jamming NN
RSEAY

NN

problem”, Internal Report LiTH-ISY-1-0772, Department of Electrical

Engineering, Linkoping University, Sweden, 1985 ~

(- ‘:.;,,wl'. ’1 -

(15] [Gall 68] R.G. Gallagher, Information Theory and Reliable Communi-

A 5

cation, Wiley, 1968

Pl

e
PR

[N

"

[16]) [Hegd 87] M.V. Hegde, Performance Analysis of Coded, Frequency-

ls(

Hopped Spread-Spectrum Systems, Ph.D. Thesis, University of Michi-

LW

44 -

BN

o
2 ',", 1

&

+7,




KGR LN PO ANLACE P AT A S G A S O, IR LN A Y £°4 2 S oa At AT A A AT A A G A A At A PR A" SO A LA £ 0 a0 a7 D gRe 2S5 %

!

oy

g ~

gan, Aug. 1987

:;. (17] [Karl 59] S. Karlin, Mathematical Methods and Theory in Games, Pro-

v gramming and Economics, vols 1 and 2, Addison- Wesley, 1959

(18] [Loev 77] M. Loeve, Probability Theory I, Springer-Verlag, 1977

[19] [Luen 69] D.G. Luenberger Optimization by Vector Space Methods. Wi-

“- ;{',',.‘ ley, 1969
_.- :}: [20] [Ma 84] H.H. Ma, M.A. Poole,“Error-correcting codes against the worst-
| case partial-band jammer”, IEEE Transactions on Communications,

. vol. 32, pp.124-133, Feb. 1984
.: i [21) [McEI77] R.J. Mceliece, The Theory of Information and Coding, Addison-
§: a Wesley, 1977

g

> (22] [McEl 84] R.J. McEliece, W.E. Stark,“Channels with block interfer-
o ence”, IEEE Transac..ons on Information Theory, vol. 30, pp.44-53,
% * Jan. 1984

.

:‘ _ (23] [McEI 83] R.J. McEliece, E.R. Rodemich,“A study of optimal abstract
“‘ , jamming strategies vs. noncoherent MFSK", Military Communications
\ ~ Conference Record, 1983, pp. 1.1.1 -1.1.6, 1983

\ o (24] [McEI 83] R.J. McEliece,“Communication in the presence of jamming-
-. - an information theoretic approach”, in Secure Digital Communications,
st

Springer- Verlag, pp. 127-166 1983

45

s

r ¥y

P N A I N I N N A A AN AN TR A B A R S Ty i v, B8



(25] [McEIl 82] R.J. McEliece and W.E Stark,“The optimal code rate vs. a

partial band jammer”, Milcom Record 1982 , pp. 45.3.1 - 45.3.5, 1982

[26] [Peng 86] W.C. Peng, Some Communication Jamming Games, Ph.D.

Thesis, University of Southern California, Jan 1986

[27] [Root 61] W.L. Root,“Communication through unspecified additive noise”,

Information and Control, vol. 4, pp. 15-29, 1961
(28] [Scha 68] H. Schaubert, Topology, Macdonald and co. Ltd., 1968

[29] (Simo 85] M.K. Simon, J.K. Omura, R.A. Scholz, B.K. Levitt Spread
Spectrum Communications, vols 1,2 and 3, Computer Science Press,

1985

constrained scalar gaussian channels”, Information and Control, vol. 18,

pp.203-219, 1971

[31] [Star 82] W.E. Stark, Coding for Frequency-Hopped Spread-Spectrum
Channels with Partial-band Interference, Ph.D. Thesis, University of

lllinois at Urbana-Champaign, 1982

[32] [Star 85a] W.E. Stark,“Coding for frequency-hopped spread-spectrum
communication with partial-band interference-Part 1: capacity and cut-
off rate”, IEEFE Transactions on Communications vol. 33, no. 10, Oct.

1986

46

[30] [Smit 71] J.G. Smith,“The information capacity of amplitude- and variance-

I': )
-
L

.
.
-

” 7
[N ]

id P d
l&f',,‘. L%

o,

O
(I

. \I

s




(33]

35]

38]

[Star 85b] W.E. Stark,“Coding for frequency-hopped spread-spectrum

communication with partial-band interference-Part 2: Coded perfor-
mance’, [EEE Transactions on Communications vol. 33, no. 10, Oct.

1986

(Star 86] W.E. Stark,D. Teneketzis, S.K. Park,“Worst-case analysis of
partial-band interference”, Proceedings of the 1986 Conference on In-

formation Sciences and Systems , 1986

(Stig 66] 1.G. Stiglitz,“Coding for a class of unknown channels”, IEEE

Transactions on Information Theory, vol. 12, pp.189-195, 1966

[Vite 79] A.J. Viterbi, J.K. Omura, Principles of Digital Communication

and Coding, McGraw-hill, 1979
-

(Wits 80] H.S. Witsenhausen,“ Some aspects of convexity useful in In-
formatios theory’, /[EEE Transactions on Information Theory, vol. 26,

pp.265-271, May 1980

[Wolf 78] J.Wolfowitz, Coding Theorems of Information Theory, Springer-
Verlag, 1978




..-. lf-nn-f[}

PP A
jrw._. \......s......w.x ‘rw,....w.,.n.......v AR ®
AT B ol R RPN\ _..-...‘.,.s.-k-w.........- PR A A ..h\k.ur._-




